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SECTION 1 - INTRODUCTION 

Consider a simple production process which is assumed always to be 

in one of only two states, a good stale and a bad state.  Specifically, 

production begins in the good state and while there    a chance event 

occurs before each item is produced so that the probability of remaining 

in the good state is  1 - jt  and the probability of a transition to the 

bad state is TC .  Once in the bad state, the process remains there until 

trouble is removed. 

Associated with each item produced is a measurable characteristic 

or quality, denoted Y, assumed to be a random variable with a distri- 

bution depending on the unknown state of the machine.  Let  p (')  and 

p (•)  be the density function for quality given that the machine is in 

the good and bad states, respectively. 

A statistical control rule is a rule which specifies when the sys- 

tem is to be brought from production to repair, which has the effect of 

placing the process in the good state.  Other than immediately after 

repair, the true process state is assumed unknown at all times.  Hence 

a control rule must be based on the quality history of produced items. 

This history is adequately summarized in the posterior probability given 

the quality history that the next item will come from a machine in the 

bad state.  This probability at time  t  is denoted X ,  Costs are 

associated with repairing the process and with the quality of each item 

produced, and the objective is to minimize the average cost per unit 

time. 
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making. 

I 

This paper  studies the 100^ inspection case where sampling is by 

attributes; each item is dichotomized as of good or defective quality. 

A numerically feasible method is given for calculating the operating 

characteristics of a rule as a function of the system parameters and the 

critical value  |* whicn the rule uses.  The operating characteristics 

which may be computed include the expected time between repairs, the 

variance of the time between repairs, the overall proportion of defective        ,/ 

items produced and the fraction of repairs made to systems still in the 

good state.  The computational method given may be used for the case 

where quality is any discrete random variable. 

The validity of the computational method is checked in two ways. 

First some inequalities which the optimal solution must satisfy are 

developed and compared with the computed answer.  Second, the discounted 

cost problem is explored through dynamic programming, and the answers 

computed using this method are compared with the previously computed 

answers. 

Next some examples of the wide variety of problems which may be 

attacked through the use of tables of operating characteristics are given. 

Lastly the model is checked for its sensitivity to proper choice 

of system parameters.  The Girshick and Rubin equations are used to com- 

pute the operating characteristics in the situation where incorrect 

parameters (transition probability, etc.) are used to compute the 

posterior probabilities X.  which the rule uses for its decision 
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SECTION 2 - A MATRIX FORMULATION 

This section develops the matrix formulation of the problem which 

underlies the computational scheme proposed.  The fact that the sequence 

(X , t = 0, 1, 2, ••* ]  of posterior probabilities forms a discrete 

parameter Markov chain with a denumerable state space is of fundamental 

importance.  The computational method revolves about the matrix of 

transition probabilities of this chain. 

Let the good system state be denoted by 0 and the bad state by 

1  and let the state of the system at time  t  be denoted 6,.  It is 

assumed that if the machine is left undisturbed, these states 

i@.,   t   =  0,   1,   2,   •'•    1  form a Markov chain with transition 

probabilities 

Pr[et+1 = i|et = o] = i - Pr[et+1 = o|e, = o] = n 

Pr[öt+1 = i[et = i] = i - Pr[et+1 = o|et = i] = i . 

Rather than restricting the development to the Bernoulli random 

variables of attributes inspection it is no more difficult to allow the 

measurable quality characteristic to be any random variable which takes 

on only a finite number of possible values.  Hence, for each 6c(0, 1] 

let  p(', Ö)  be a probability distribution on the elements y  in a 

finite set X-     That is for every 0e{O, 11,   ^ P^ &)   =  1    and for 
yeX 

all yeX,  p(y, 0) > 0. 

Let     [^n.)   Y  ,   Yp,    • • •    }     be  a  sequence  of  random variables whose 

conditional   distribution  given     (0  ,   6-, ,   ©p,    •••    ]      is  as   independent 
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random variables with Y  distributed according to  p(•, 6 ).  The 

sequence  (Y , Y^ ,   X ,   ••• ]  represents the measurements taken on the 

items the machine has produced. 

After each item is produced there is the option of continuing pro- 

duction undisturbed or repairing the machine. A repaired machine is in 

the bad state with probability x  which is usually assumed to be zero. 

For each yeY let  C(y)  be the  cost incurred by producing an item 

of quality y  and let  KQ  be the cout of repairing a machine which is 

in state  0  for e,e[0, 1] . 

The parameters introduced so far serve to specify the model and are 

assumed known. 

If at any time that the machine is in production it were known 

exactly which state the machine is in one would be able to make the 

proper decision whether or not to repair.  But the true state of the 

system is unknown, and thus the only relevant information obtainable 

from the observations at time  t  is the posterior probability X  that 

the machine will be in the bad state for the production of the next 

item assuming no repair is made.  Girshick and Rubin [9] and L. Breiman 

[6] show that any decision rule of interest may be specified by giving 

a critical value |*e[0, l] with the interpretation that the machine is 

repaired at time t  if and only if X. > |*. 

Thus the sequence  (^/y X ,   Xp, ••• ]  is of importance and it is 

desirable to formalize its structure.  Let 31  be the unit interval 

[0, l]  and generically let  x be an element of IZr.  For each yeY, 

two operators are defined on 31  into 31  by: 



Ax = xp(y, l)/[xp(y, l) + (l - x)p(y, 0) ] (2.1) 

and 

TX-AX+(1-A x)n (2.2) 
y   y       y 

The first operator is an application of Baye's formula.  If  x  is 

a prior probability that the machine is in the bad state and  Y = y  is 

produced then the posterior probability that the item came from a machine 

in the bad state is Ax.  The posterior probability that the next item 

will come from a machine in the bad state is  T x. 
y 

For any critical value  £ * define the transformation from ZEEI 

into 31  by: 

T x    if  x < ^-x- 

r^x = I     V (2.3) 
y i 

T x0   if x > ^ 
y        - 

V 

Let X = x  which assumes the system starts in the repaired state 

and then define the sequence  (X(y X1, X , ••• ]  recursively by 

X+J.. = rl\ (2.1+) t+i  yt t 

THEOREM 2.1 

If Xn - x
0  and X^, = T,VV  for t = 0, 1, 2, •••  then the 

0 t+1    *+   ^ 

sequence  (X , t = 0, 1, 2, ••• ]  forms a stationary (time homogenous) 

Markov chain. 



PROOF: 

Suppose X = x  for s  =  0,   1,  2,   ... ,   t     and let 

S^ = (y: T^ et = T]]  for any T] . 

Then 

Pr[Xt+1  = T]\X0 = x0,   ..,   ,   Xt  = xt]   = Pr[YteST1|X0 = x0,   ...   ,  Xt  = xt] 

- x    X p(y. i) + (i - x ) X p(y. o) 

=  Pr[Xt+1 = Ti)Xt = xt]      Q.E.D. 

Since the space X was assumed finite, there are only a finite 

number of possible values for the random variable X.  for any given t. 

The union over t = 0, 1, 2, *'*  of the sers of possible values is at 

most countable and this set, denoted by J, is the state space for the 

Markov chain. 

The period immediately following one repair to and including the 

next repair will be referred to as a cycle.  The next theorem states 

that for the purpose at hand the process may be studied completely by 

concentrating on the first cycle only. 

THEOREM 2.2 

Let N^ be the length of and W  the total cost of the k 

cycle.  If E[NI/.] < + oo  then with probability one 

iimm[(w1 + ••• + WK)/(N1 + ••• + r^)] - E[W1]/E[N1] 
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PROOF: 

W , \'I ,   ...     are independent, identically distributed random vari- 

ables with E[ JR., |] < + oo  and similarly for N , N , ••• .  The theorem 

follows immediately from the law of large numbers. Q.E.D. 

It is easiest to study the first cycle b;- considering the Markov 

chain to be absorbed when X > |*.  Let R  be the repair region defined 

by R = Jfl [i*,   l],   and let  H be the transition probability matrix 

corresponding to this absorbing chain.  The  i, j entry of H  is 

i       i il . .  corresponding to a transition from x eJ  to x eJ, 

H  is symbolically partitioned into 

H --- 

Hll   H12 

0 

where  H ,  has domain  J-RXJ-R, H   has domain J - R X R  and 

I  is the R X R  identity.  The partition is symbolic in the sense that 

each submatrix is usually infinite dimensional. 

For the absorbing Markov chain with Xn = x  let ^ = (i|r.)  be the 

row vector with \|r.  equal to the expected number of X - x  for 

X'VR.  Let N be the cycle length: 

N = inf (t:  XteR] 

and  lot    A =   (A.)     be  the  row vector  with 
J 

Aj = Pr[XN = x
j|X0 =  x0] 

for xJeR. 
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For a finite Markov chain the following theorem is well known. 

Let A he the row vector  (l, 0, 0, •••)  and 1 the column 

vector consisting entirely of ones.  For the absorbing Markov chain 

described above, ty     is the unique non-negative minimal solution to 

^(1 - H11) = A (2.5) 

and further 

A = *H12 (2.6) 

E[N] = n (2.7) 

For a Markov chain with denumerable state space the development 

leading to the proof of this theorem may be found in Kemeny, Snell and 

Knapp [12] in the chapter on transient chains.  Although not a rigorous 

proof, an intuitive justification of Equation 2.5 is easily made.  For 

every column other than the first, the equation may b-- written 

^i   = E  ^M,., ;  XVR and x1 ^ x0 

In words, the expected number of times the process X  is in state x 

is equal to the expected number of times the process is in x  leading 

to x  weighted by the probability of such a transition, and this is 

summed for all x ^R.  The first column of the Equation 2.5 is \|r =1 

which states only that a repair occurs once per cycle. 

8 



This theorem leads to the computation of the average cost per period 

for any critical value £*. Let W be the total cost of the first cycle 

and y     the average cost per period. 

j  = E[W]/E[N] (2.8) 

W has two components of cost: W . the cost due to the quality of items 

produced and W , the repair cost. For X, = x /R the expected cost of 

the next item is 

E .[C(Y)] - x1 X C(y)p(y, l) + (l - x1) X C(y)p(y, 0). 
x yeY ye^ 

E .[C(Y)]  denotes the expectation of  C(Y)  where  Y  .s distributed 
x 
according to p(•, 6)  and  6 is zero with probability x  and one 

with probability  1 - x .  Thus 

E[W1] = X  ^E i[C(Y)] (2.10) 

XVR     
X 

For X^ = x eR, the probability that repair will be made to t, bad 

machine is x .  Hence 

E[W2] = Y.      Ajfx Ki + ^ - x )Ko] (2-11) 

x^R 

and  E[W] = E[W1] + E[w2]• 

Thus by solving the infinite set of linear equations '|r(l - H  ) = A 

which depend upon a particular choice of a critical value %*    and then 

computing A = ^i o an<i  E[N] = Ufl one may compute the average cost 

per period y  =  E[W]/E[N]  corresponding to the use of i*    as a critical 



value.  By doing this for several £,*     in a trial and error manner one 

may compute the minimum cost policy. 

It should be noticed that the cost information enters the computa- 

tions at a late stage.  The major computing effort lies in computing the 

ty     and A  vectors and it is only after these are computed that cost 

factors enter.  Therefore as a solution to the problem it is proposed 

to table 

a.  m, = ^  x \(f.        = The number of periods per cycle the 
i / 

machine is in the bad state.     (2,12) 

b.  m = 2^  (l-x)\if.  = The number of periods per cycle the 

XVR machine is in the good state.    (2.13) 

c.  m + m = E[N]        = The expected cycle length,       (2.I4) 

d.  Y  •- ]r  x A.        = The expected fraction of repairs made 

to bad machines. (2.15) 

e.  r  = 1 - r, = The expected fraction of repairs made 

to good machines. (2.16) 

as a function of the system parameters and the critical value  £*.  In 

this notation one has: 

E[W1] = mo Zc(y)p(y, 0) + rr^ Z C(y)j>(y,   l) 
y y 

E[W2] =   roKo + r1K1 
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Some other easily computed results are of interest.  If X   is a 

numerically valued random variable the average outgoing quality level is 

fm0 Z yp(yj 0) + m
1 Zyp(y^ i)]/[mo + m^^] 

y y 

The repairs per period is  l/(m + m ).  The second moment of the cycle 

length may be computed by solving 

(I - H11)cp = A
T 

for the   column vector    cp    and  then 

E[N2]   -     X    Vi 
XVR 

These results may be used for comparison against actual values encoun- 

tered in an application.  Cycle Lengths or quality levels differing 

significantly from predicted values would indicate an erroneous choice 

of parameters. 

The results presented so far may be generalized, at least partially, 

to the case of a machine with more than two underlying states, say a 

machine witii a mediocre state as well as a bad and a good one.  Con- 

ceptially the results still hold but the posterior probability distribu- 

tion IZI   which tracks the process must now be multidimensional.  This 

leads to such difficulties both in computing and implementing the policy 

so as to render this generalization of little interest. 

11 



SECTION 5 - A NUMERICAL SOLUTION 

This section discusses a numerical solution to the set of linear 

equations 

\|/(I - H11) = A 

or 

,if. = Y      ty-T).. for xJ/R and xJ / x0 
j   Y       i ij 

XVR 

Usually a reduction of this infinite set of equations to a finite 

set is the first step in any solution.  One method is to consider only 

those states that the  [X., t = 0, 1, ••• )  process can reach in m 

steps, or nearly equivalently, to truncate the quality history and not 

use the quality of items produced more than m periods ago in computing 

the posterior probabilities.  For m  sufficiently large the ensuing 

finite set of equations will closely approximate the infinite set. 

Unfortunately the number of possible states reached in m  steps of the 

( X , t = 0, 1, ••• )  process is astronomically large, even for 

moderate m.  It has an order of magnitude of the cardinality of Y 

raised to the m - 1 power. 

But consider the implementation of a policy of the optimal form. 

A machine operator repairs his machine and starts operation with a 

probability on the bad state of zero.  After inspecting each item pro- 

duced he updates his posterior probability.  When it reaches a critical 

value, say .60 chance that the machine is in the bad state, he repairs 

the machine and begins the cycle anew.  It would not seem objectionable 

12 



if this machinist computed these probabilities only to the nearest .01 

decimal place.  But this automatically reduces the problem to a finite 

number, at most 101, of posterior probability states.  This simple idea 

is the keystone in the proposed numerical solution. 

As a practical matter it seems best not to have a constant mesh 

size such as .01 but to have the mesh size vary so as to be sufficiently 

small to be able to handle the smallest change in posterior probability 

encountered.  For example, if X  = x  one would want the mesh size at 

x  to be at least as small as  min jx - T x|.  Unfortunately, this too 
v        J 

may be difficult to achieve entirely but it serves as a useful target. 

The algorithm for approximating the transition probability matrix 

will be presented for the case of inspection by attributes where item 

quality is a Bernoulli random variable.  Let  Y = 0  if the  t    item 

is good and Y. = 1  if it is defective,.  For this special case let  p 
t -^ o 

be the fraction of good items produced when the machine is operating 

correctly and let  p  be this fraction when the machine is in the bad 

state. 

P6) = P(0, 0)    for SefO, 1] . 

The algorithm which computes the approximating transition proba- 

bility matrix is described in the Appendix. Table 3-1 shows such a 

transition probability matrix, computed on a Burrough's B5000 machine. 

The states listed are possible values for the posterior probabilities 

used in contro^ing the process.  The algorithm generating this matrix 

has two distinct phases.  In the first, a finite number of these states 

are generated, and in the second the transitions among these states are 

filled in. 

13 
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A 
Once the finite matrix, denoted  H, which approximates the infinite 

matrix H  has been computed one proceeds to compute operating charac- 

teristics as a function of a critical value  I*.  it has been shown 

earlier that the major computing effort lies in solving the equations 

■d'(l - H^*) = A , (3.1) 

where  H    is the submatrix of  H  consisting of states with values 

less than £,*. 

To do this in the most efficient manner it is best to set up the 

largest possible set of transposed equations. 

(I-H)Tr=AT, (5.2) 

and then, using the common Gaussian elimination technique, to solve sub- 

sets of these equations for increasing £*, in an increasing manner. 

Besides allowing this overlapping of effort, the Gaussian elimination 

technique recognizes the many zero coefficie ,£  n the equations, 

enabling a faster, more accurate solution.  The modified Gaussian elimi- 

nation procedure used is also presented in the Appendix. 

A sample of the results of the program is given in Table II.  The 

process parameters are listed at the top of the page.  The operating 

characteristics corresponding to each choice of critical value appear 

below this.  The entire calculations took 6 seconds of B5000 computer 

t ime, 

Ik 



PI = .J . l <r C  1-' ( = i;. y ■;'. H 1  - (. , - i .. u    t PSL = o.i:c/ 
•-• A A , 4 t- i r Kti x , r ( ,. (j^f l i\ 1 h I » \\ n >. r : K 7 A S YP = C . 1 <H hCHl 

11-1. Tun ., -.11 !"■. >-■'  HI 1 I Y  V fl T h 1 X IS 
s r M i f ■»Uli. S I .i I t : 1 '• 1 f « I ! i-i w /ut blflU nl U 
Mi , ( f K U :■ ) i.ij, ( l i 1   (ID) H-,. ■) M" . ( 1 L ) ( IL J Pf-Cti 

(. [. , CC i) 1 ■"■ . I'.f i'> -i. <« t\. 1 U , Ü^Ü 0.0 1C 
1 0 , 0 .-. u i C . U i - " . tfit 34 0 . J 1 •a 0.014 
? (, . 1. j r. 3 r .u^T 0 , ■»H J 37 Q .-lie 0.017 
3 i;. c •< y '4 C . U 'j 9 " . ^ (J 1 35 O.bUa 0.019 

^ c. t ^ V 5 (, . 0 (. / 0 . s' 7 V 40 0.547 0.021 
5 0.U6 / Ö C . 0 / ö (1.^77 U\ 0.590 0.0k3 
6 C . C ^ '4 ^ C .07 V u. s 7 e 42 Ü.6 33 o . o ;■: g 

/ u .c^v « C ,0^/1 0.97^ 42 0.6 33 0.025 
8 c .CdA 9 C . 0 M 7 0.974 43 0.67a 0,026 
9 C .08 ^ 10 C . 0 V r 0.973 43 0.674 0.027 

10 0»u ^ 0 11 C .091 0.973 43 0.674 0.027 
1 1 C . C V 3 w O.Ovb u . 9 7 k- 43 0.674 0,026 
12 C.C95 13 0.097 0.972 43 ü.bf a 0.026 
13 0.097 14 C . 102 0.572 43 0,674 o.oza 
l« 0, 102 14 C. 10? 0.971 44 0.713 0.029 
15 0,107 lb 0.107 0,970 44 0,713 0.030 
16 0.113 15 0. 107 0.969 44 0.713 0.031 
17 0.114 16 0.113 0.968 44 0.71 J 0.032 
18 0.117 17 C. 114 0.966 45 0.749 0.032 
19 0.119 18 0.117 0.967 45 0,749 0,033 
20 0. 122 19 0.119 0.967 45 0.749 Ü.033 
21 0. 126 20 0.122 0.966 45 0,749 0.034 
22 C.131 21 0.126 0. 965 45 0. 749 0,035 
23 Ü. 136 22 0.1 31 0.964 45 0,7'»9 0.036 
24 0.143 23 0.136 0.963 46 0.782 0.037 
25 0.150 24 0. 143 0.961 46 0.782 0.039 
26 0. 159 25 0.150 0.960 46 0.782 0,040 
27 0.170 26 0,159 0.958 47 0.812 0.042 
26 0.183 27 0.170 0.955 47 0.812 0.045 
29 0.19a 28 0. 183 0 . 9 F. 2 46 0.8 39 0.048 
30 0.216 29 0.196 0.949 46 0,839 0.051 
31 0.236 30 0.216 0.945 49 0.863 0.055 
32 0.259 31 0.236 0.941 50 0.884 0.059 
33 0,285 32 0.259 0.936 50 0.884 0.064 
34 Ü.315 33 0 .2tt5 0.930 51 0.902 0.070 
35 C.348 34 0.315 0.924 52 0.918 0.076 
36 0,383 35 0 . 3^fl 0.917 53 0.931 0,063 
37 0.422 36 0 .383 0.910 54 0.942 0.090 
38 0.462 37 C .422 0,902 54 0,942 0.096 
39 0.504 38 0 .46? 0.894 55 0.952 0, 106 
40 0.547 J9 0 .504 0.886 56 0.960 0.114 
41 0.590 40 0.547 0.876 57 0,967 0.122 
42 0.633 41 0 .590 0.870 57 0,967 0.130 
43 0,674 42 0.633 0.662 57 0.967 0.138 
44 0,713 43 0 ,674 0.655 57 0,967 0.145 
45 0.749 a4 0.713 0.846 57 0,967 0.152 

= 0.967 

Table I (Continued on next page) 
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ut C . / f- ^ '(5 C . i''( ^ 'J . H '1 1 5^ 0.96/ 0,159 
nr 0 . e I,' ■if) C . 7 M ^ 0.^36 9^9 0 . V ö V 0.164 
do c .e JV a/' U . « 1 2 (1 . H 31 999 0. vvi 0 . U 9 
<|S C .fift J MO Cd J9 0 . rt ? ft 999 ü . vv^ O.W) 
bC Q.tin 't V I) . ö n 3 0 . H ? ? 999 U . 9*« 0.17« 

51 0 , vc^ 5U 0 . n ^ .1 0.^19 999 O.Wb o.iei 
b2 C.VIO 51 C .VO? O.H ic 999 0.VV6 o.iet 
53 C.SJ1 b-J O.sllH o.e 13 999 0.996 0.107 

51 0 .'.'(X 5J C. 9 J t 0. fi 1 1 999 0.997 0. IÖ9 
55 0.55? 5 M o. y * -^ u. eo9 999 0.99a 0.19 1 

56 (J .960 5b 0 .9b? o. f o e 999 0.99Ö 0.192 

57 0,96/- 5o C.VöO 0.H06 999 0. V9ä 0.194 

Table I  An approximate transition probability matrix is given here for 
the case where a process in the good state has a probability of  PI = .02 
of moving to the bad state for the production of the next item.  PO - .99 
and  PI = .80  are the fraction of good items produced when the ma.chine 
is in the good and bad states respectively.  The table has the following 
interpretation.  From any state such as state number 25, x ~   .150 the 
posterior probability  (^t-» t = 0, 1, • • • ]  can go to one of two other 
states.  If a good item is observed, v;hich for X^ = . 150 occurs with 
probability .961, the process moves to state number 2h  with X-^^ = .ih^- 
If a defective item is observed then X  ^ = .782. 

ASYP = .10k     is a value about which the states tend to cluster.  An 
approximation is made here by grouping all states within EPSL = .007 
of ASYP into two classes and assigning a common value to each class. 
A second approximation occurs when a "TO STATE" cannot be found exactly 
among the finite number of states listed.  Such a "TO STATE" is assigned 
to its best approximation and MAX. APPROX. = .0201 measures this 
approximation. 
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1 HrtNM I I mi    t; (■■•<;,■' 1 I  I I r IS    r . r ; ,) 
h ^ AC I 1 1   .    Uf     '.I in I     I  I M' - I •'  ,1 l f'M)    •'Y    fl    h F f-ö I H t H    f fl C H I r\ L     IS    C . "i-JO 
FMACII'.'.  Hi-   »itj'ju   iif1'.- »'•■ u JCI i)  MY   /i   ri.FFcrivr   yAcniNt   iso.eoo 

CKUKrtL       LO'ttltU H^KII.I.'S > 'M HiflCrrCN             FKACFILN    CF    NACh H k. P a I H S 
VALUt                 CYCLL ntilCH    "ÜCt^.lb LF    ntFECT. i-itPHU    hHCh    Aht PEN 

LLHU|>' -i,C.,C'    -UFFLCF-          ITrf^S -'j L L ü -    -DfcFtCT- PEr^ILD 

0.10                   1 ^ . A 9 11.n1, U . B r.          0, C '< 3 P 0.^6^          0.23 6 O.Ud004 
o.ib             $/.*(■ in .i?. i.in      n ,c? rc o.3io       o.eea o.Ui;66y 
Ü. 2 C                  3 ? , ^ fc 31.12 3.J'i         0.0^70 0.316         0.601 0.0^669 
U.^5                  it ,Ut 3'i.i? 3.31         O.C?7C 0.316         0,601 0,02669 
Ü.3C                  37.lfa ?1,1? 3.J1         a.C2?C 0.316         0.6fi1 0.02669 
Ü.Jb                  37.6 3 31.13 3, IC         0.C2M 0.310         0.6SC 0.02613 
U.IC                  37.63 31.13 3. IC         0.C271 0.3 1U         0.690 0.02613 
0,15                  3rt.k!? 31,7'3 3.16         0.C272 0.3UJ         0.6S7 0.02617 
O.bü                  3*.<!2 U.75 3.16         O.C272 0.3Ü3         0.697 0.02617 
0.b5                  in.*9 35.j7 3.63         0.0277 0.291         0,709 0.02564 
0,60                  39.3? 15.66 3.72         O.C?79 0.205         0.715 0,02510 
0.65                  10.11 36.20 3.91         0.C285 0.271         0.726 0,02193 
0,70                  12.15 37.61 1.5C         0.C303 0.216         0.751 0.02373 
0,75                  55.07 16.96 8.91         0.0103 0.062         0.938 0.01790 
Ü.ÖO                  56.31 17.23 9.0fl         0.0106 0,057         0,913 0.01776 
0.Ö5                  57.05 17.65 9.10         0.0113 0.019         0,951 0.01753 
0,90                  57,76 le.Ol 9.7P         0.C121 0.012         0.958 0.01731 
0,95                   59.66 18.67 10.99          0.0150 0.029         0.971 0,01676 

Table   II    For the   system whose  parameters  are   listed  in  the   heading, 
this  table  gives  the  operating  characteristics  of  rules  defined by 
a  critical  value.     For  example,   if the   rule   "Repair at  time     t     if 
and  only  if    Xj.   >  .65"   is  used  then the  expected   cycle  length or 
number  of  periods  between  repairs   is  i+O.ll.     For   36.20 of  these  periods 
the   process  will  be  in the  good  state;   for 5•91.»   the  bad.     The  overall 
fraction of defective   items   produced will  be   .0285.     The  fraction  of 
machines   sent  to   repair which were  actually  still   in  the  good   state   is 
.27k.     The  remaining fraction  represents  bad machines.     The   last 
column   is  the   reciprocal  of  the  cycle   length. 
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SECTION k -  SOME EXAMPLES 

Two examples of the use of these tables are given.  The first is an 

illustration of the simplest type of process for which the tables are 

useful; the second, the most complex. 

Example 1 

Suppose the probability that the process moves from the good slate 

to the bad state is n   =   .02.     Let  p =   .99    and  p  = .80 be the 

fraction of good items produced when the system is in the good and bad 

state, respectively.  Each defective item produced costs  c = ,60    units, 

A good item has zero cost.  Repair is instantaneous and costs x.00 

unit, regardless of from which state repair was made. 

For each critical value, the cost per period must be computed. 

That critical value having the lowest cost then specifies the optimal 

policy.  For this simple example the average cost per period is given 

by 

c X (Fraction of Defective Items] + 1 X (Repairs Per Period] 

The fraction of defective items and the repairs per period are obtained 

from Table II. 

This computation yields Table III below. 
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Critical Expected 
Value Cost/Period 

0.10 0.0933i+ 
0.15 0.0^287 
0.20 0.0^287 
0.25 0.042o7 
0.30 O.Oi+287 
0-35 0.04267 
o.uo 0.0U267 
0.^5 0.01+250 
0.50 0.0U250 

0,55 0.04225 
0.60 0,04216 

O.65 0.04205 
0.70 0 = 0^4 191 
0-75 0.04208 
0.80 0.04214 

O.85 0.04231 
0.90 0.04259 
0.95 0.04576 

Table III This table lists the expected cost per period 
for each choice of critical value for the problem 

given as Example 1. 

The minimum cost occurs at an optimal critical value of £,* =   -70 

and has a value of .04191 units per item produced.  The cost ^urve is 

relatively flat.  At a critical value of .60 the cost is .04216 and 

at .80 the cost if .04214.  This flatness justifies computing the 

operating characteristics for critical values in steps as wide apart as 

.05. 

Referring again to Table II one sees that under the optimal policy 

the expected cycle length Is •+2.15 periods and for 37.64 of these 

periods the process operates in the good state.  On the average the 

process operates in the bad state for 4.50 periods before a repair is 

made.  The overall fraction of defective items produced is .0303 and 

24.6% of the time an erroneous repair is made to a process still in the 

good state. 
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One common criticism of the control approach using posterior proba- 

bilities is the difficulty of implementation.  This criticism is ill 

founded in this particular example.  By examining the transition matrix 

in Table I one sees that a posterior probability exceeding .70 can occur 

in only two ways.  The zeroth item, produced immediately after repair is 

always ignored.  If no defective item occurs in items 1 through lU, then 

repair is made on the occurrence of the first defective.  If, however, 

a defective item is observed in items 1 through Ik,   then repair is made 

on the occurrence of the second defective item. 

Example 2 

Again let n  =   .02,  p  = .99 and p, = .80.  The direct cost of 

each item produced is .^0 units.  The selling price of an item is I.00 

units and each good item produced can be sold.  When production is 

stopped upon suspicion that the process is in the bad state two things 

occur.  First a detailed examination is made to determine if the process 

has truly broken down.  This examination takes 2  periods of time and 

costs .20 units.  If the process is found in the bad state a repair is 

made which takes 5 periods of time and costs .80 units.  The objective 

is to maximize the expected profit per time period. 

The expected cycle length given in Table II is now the expected 

number of periods in a cycle that the process is in production.  To get 

the true cycle length, an amount representing repair time must be added. 

One uses th" columns giving the fraction of machines repaired which are 

good and defective.  At a critical value of .70 this yields 
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E[N] - 42.15 + 2 + .75^ x (3) 

= hb.kl 

During a cycle U2.JS items on the average will be produced at an item 

cost of ,k0  units each to yield 

Item Cost = 14-2.15 X -^0 = 16.86 

Of these  (l - .0303) x J+2.15  will be good items which may be sold for 

1.00 units each to yield 

Item Return = .9697 X 42,15 = 40.87 

The average cycle repair cost will be 

Repair Cost - .20 + .75i+(.8o) = .803 

This  yields,   for  a  critical value  of   .70  the   average  profit   per  period 

of 

y   =   (iiO.87  -   16.86  -   .80)A6.4l  =   .500 

Repeating these calculations for several cl. ices of cr'tJca] values one 

arrives a' Table IV.  The optimal critical value is .70.  By referring 

again to Table II one may calculate that the rate of production of good 

items is 

42.15(1 - .0303)    pQnv ,.   /   . ,   jV 1 -.     = .8807 items/period . 
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Critical Total   Cycle Profit, 
Value Length                                 Per   Period. 

.hO hi.90 .4992 

.U5 1+2.^1 .^995 

.50 U2.31 .^995 

.55 U5.IP .U996 

.GO h3.53 .U99B 

.65 UU.29 .1+999 

.70 U6.41 .S000 

.75 60.68 .V997 

.80 ul.14 A996 

Table IV This table lists the expected profit per period for each choice 
of critical value for the problem given as Example 2. The maximum profit 
is   seen  to  occur at   a  critical  value  of   .70. 
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SECTION 3 - VALIDITY 0.^ THE SOLUTION 

The validity of the proposed solution is checked in two ways. 

First several inequalities which the proposed solution must satisfy are 

developed and the solution is checked against them.  Second the problem 

is solved anew through the method of discounted cost dynamic programmi nf-r 

a..; this answer compared to 1 he original. 

Consider the situation depicted earlier in Example 1 where repair 

is instantaneous and has a cost of one unit irrespective of the state of 

the process at the time repair is made.  Let  c  he the cost of a 

defective item and let n,     p ,  and  p,  have the same meaning as 

before.  Let y     be the average cost per period assuming that the state 

of the process were known. 

y   =  Repair Cost + Item Cost 
(5.1) 

= Tt  + c(l -  p ) 
•to 

If y     is the minimum cost assuming the process state unknown then 

2_  < y 

To get an upper bound on the solution one realizes that the cost 

under an arbitrary policy must be greater than the cost of the optimal 

policy.  The arbitrary policies considered are of the form: 

"Repair every m  periods"  for some constant  m. 

Let  N  be the number of periods that the process is in the good 

state, and let 
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a     =   Pr[N  -   n]   -   (1  -   K)™'1* n 

oo 

b     =   Pr[N  > n]   =     T    %  =   (^   '   n)""1 

Tvo   identities  are  used. 

I a. = (1 - «)k-1 - (1 - n/ (5.2) 
i-k 

ir-1       m- 1 m- 1 
X nan =  Z  Z a. 
n=o      k=l l=k 

= [[1 - (1 - n)"1"1]/«] - (m - 1)(1 - n)"1'1     (5.3) 

—rn 

If  7'  is the average cost per period under a policy of this form then 

1   f"-1 

y     = 1/m +  c(l  -   Pl)   
+ - "I     I    e(p1  -   Po)kak  +  cm(p1  -   p^b^ 

^ k=l 

(! -  Pl)  +±  [c(p1 -  po)/n  .  1]   -  C(Pl
B"  '"'(I  -  n)

m      (5.V =   c( 

To   simplify  this   expression   let:     (3        -cCp,    -   p   )/JI     and   use   t.he 

approximation  for  large     m     and  small     n 

-nur  ~   ,. v m 
e =   (1  -  TT ) 

One   gets 

y     =   c(l  -   p^   +   (-1   -  ß)  -   + -   e 

:(1   -   Pj   +   (*   - h{ß   -   1)   +?  e"™ (5.5) 
ß   _ -irm 

m' " '        m 
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For m —  this reduces to 
7T 

:(1 " P0) 
+ c(po - p^C-J) (5.6) 

Thus 

For Example 1 

y   <   y   <   inf      y      <  y 
m > o 

2 = .0260 

y  = .0419 

■   ~    —m 
inf y 
m >o 

.0665 

7 = .0679 

The discounted cost dynamic programming approach to sequential 

decision problems is well known. 

Let       o:  be the discount factor such that a unit of value one 

period hence has a present value of 0c  ; 

K   be the cost of repairing the machine; 

c   the cost of a defective item; 

g(o:, x)   the minimum expected total discounted future cost 

C(x) = c[x(l - p1) + (1 - x)(l - po)]. 

If a minimum cost rule exists then one can easily show that 
/ 

ON  _    /_.      O- 

;(a, x) = min \ 

K + C(xu) + QE og(a, r^) 

c(x) + aExg(a, TYX) 

(5.7) 
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Derman   [8]   has   rigorously  shown   that   such  a  rule  exists  and   is  given by 

"Repair at   time     t     if and  only   if     X  eR   "     where 

Ra =  (x:  g(a, x)  = K + c(x0)  + OK og(a,  TYX
0
)] (5.8) 

x 

One usefulness of this theory lies in the fact that Equation (5-7) 

may be solved in a straightforward manner.  One defines g (o;, x) - 0 

for all  xe[0, l]  and then computes recursively: 

K + C(x0) + aE 0gn(o:, T^0) 

1(a, x) -  min    ( X (5-9) >n+ 
c(x) + Q!Exgn(a, r^x) 

It is easily shown that for every Cte[0,   l) the sequence of functions 

(g (®)   '))  converges uniformly and monotonically to a hounded limit 

function  g(Q:, •)  which is the unique bounded solution to the functional 

Equation (5.7). 

The general theory shows that    "The Existence of an Optimal 

Stationary Non Randomized Rule in the Average Cost Case" shows that 

lim g(a, 0)(1 - a) = 7 
a^ 1 

and for some subsequence  (o:  ] 
V 

lim Ra   = R* 
k—>°o  ix 

where R*  is the optimal repair region under the average cost per period 

criterion and  7  is the minimum average cost per period. 
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Thus a means is provided for checking the proposed solution.  For 

the case considered in Example 1, Equation (5-7) was solved numerically 

for values of a of .98, .99, -995, .999- 

It should be remarked that convergence was extremely slow and in 

order to get meaningful results it was necessary to begin the iteration 

with a function close to the solution.  However, the results w« re very 

close to 'hose computed earlier as may be seen in Table V, verifying 

the computational procedure used in the average cost case. 

Discount 
Factor 

a 

99 

995 

999 

Crit. Val 
Defining 

R 
Q 

• 77 

■ Ih 

• 73 

.72 

(l-a)x 
g(a,o) 

03817 

05958 

OhChl 

,04111 

(l-a)x 
g(a,i) 

(l-a)x 

g(c^M) 

max|g(a,0-[Tg(a 
i 

.05817 .01+150 .002 

.0U958 .OU125 . 001 

.Ch^hl . Ch 121 .001 

.0U211 .0U129 .001 

g(a,o) 

1 • 909 

5.958 

8.082 

U 1.110 

Table V  Solution of Example 1 by the discounted cost dynamic programming 
technique.  For large o; the critical value should be near the earlier 
result of .70,  The third, fourth and fifth columns should be compared 
with the average cost per period y  =   .Oi+191 computed earlier.  The 
relation should be 

(1 - a)g(a, o) < 7 < (1 - a)g(a, 1.) . 
M 

The modal point of the stationary distribution for  X   is denoted £ , 
M 

and  (l - o:)g(Q;j i   )  should approximate y.     The last two columns are 
given to evaluate how well the numerical solution satisfies the equation 
g(a, •) = Tg(a, •)• 
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SECTION 6 - SENSITIVITY ANALYSIS 

Before one may apply the optimal control technique proposed in this 

paper one must estimate the process parameters n,  p  and p, .  Suppose 

these are estimated incorrectly.  A means of detecting incorrect estimates 

has already been given;  compare the actual cycle lengths and fraction 

defectives produced with the predicted values for these quantities.  But 

still unanswered is the behavior of the process under a control rule 

based on incorrectly estimated parameters.  This section provides a 

means for answering this question. 

It io assumed that the estimates of the parameters are n,     p  and 

p,  but that the true values are n'.  p',  and  p'.  The controller has 
1 o        1 

computed an optimal critical value  f; *"  based on his estimates IT,  p 

and  p  and the process will be controlled as before through the 

sequence  (X ,, t = 0, 1,    ...   1  defined as before: 

xt+i = 
T
YX 

where  the   estimated  values    TX ,     p   ,   and     p  ,   are  used   in  defining  the 

I* transformation     x 
y 

However, the (X , t = 0, 1, ••■ ] process no longer has the 

Markov property, in general, and its transition probabilities also 

depend on the unknown parameters n',  p'  and  p'. 

The technique proposed in the Girshick and Rubin paper affords a 

means of analysis.  One considers the b.lvariate process 

f(X , 6 ), t = 0, 1, ••' )  which enjoys the Markov property with 

transition probabilities given in Table VI. 
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Transit ion 

From 

(X, 0) 

(x, 0) 

(x, 0) 

(x, 0) 

(x, 1) 

(x, 1) 

(X 
t + %^ 

iro>:f 0) 

(T^, 0) 

(ToX, 1) 

(T.X, 1) 

(ToX,    1) 

(T^,   1) 

Transilion 
Probability 

P'(]     -    7T') 

(i - P;)(I 

P'TT ' 
o 

(1    -     P0)TT, 

(1    "     P{) 

-   n') 

Table VI The possible transitions with corresponding probabilities for 
the bivariate process f(X , Q+), t = 0, 1, ••• ].  These results nold 

only for x  not in the repair region R. 

Let \|(  = (^.)  be a row vector where  \|'.  is the expected number 
J J 

of times in the first cycle that the  {(X , 8 ), t = 0, 1, process 

is in state (x , 0) for x not an element of the repair region R, 

Let H = (T..) be the transition probability matrix corresponding to 

transitions of the form  (x, 0) —> (T X, O)  for  x/R and  T X/R.  Then 

<3 

p;(i - «') if  xJ = T x1 

<   (1 - P:)(1 ■ n') 

0 

o 

o 
if  x'J = ■ 

otherwise 

By an analysis entirely similar to that used in developing Equation ^2.5) 

one has that  i|/   is the unique solution to the infinite set of linear 

equations : 
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*° = I      *%°     ;     xJ/R and xJ / xC 

XVR 

and \J/  = 1. 
o 

Let  \1/' = (^!)  be a row vector where ty \     is the expected number 
J J 

of times in the first cycle that the  ((X , S ), t = 0, 1, 

is in state  (x , 1) .  In the case where IT = n ' , p  = p1 

]  process 

ana  p 
1 

one would have  x ^. = (l - x0)^'.  and this is the approach Girshick and 
J J 

Rubin suggest.  For the case at hand a new system of equations must be 

developed for the  t'  vector.  Again the expected number of times the 

process is in any particular state is equated with the sum of the expected 

number of times the process is in a preceding state weighted by the 

probability of a transition. 

Let  H' = (T"I! ,)  be the transition probability matrix corresponding 

to transitions of the form  (x, l) —» (T X, l)  for x^R, and T X/R. 
<J J 

Then 

P 

i:_. - { (i - PI) 

o 

It       X       =    T    X 
o 

if    xJ   = 

otherwise 

T.X 

Let     H"   =      ('H'.'. )      be   the   transition   probability  matrix   corresponding 

to   transitions  of the  form     (x,   0)   —> (T   X,   l),     Then 

{ 

^ = 

p'n ' o 
(i - P;)«' 

0 

if    x"- 

if    x1 

T    X 
o 

T    X 
O 

otherwise 
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The vector  V  is the unique solution to the infinite system of 

equations: 

x VR X VR 

To investigate the behavior of the process under incorrectly chosen 

parameters one first finds the critical value  ^* defining the repair 

region that the controller will use, based on his incorrect estimates 

ft,     p  and  p..  This repair region completes the definition of 

Equations (6.1) and (6.2) which are then solved, using the approximation 

technique discussed in Section 3,   to  yield the vectors  t  and f. 

Then m_, the number of periods during the first cycle that the process 

is in state 0,   for 9e{0,   1)  is computed by 

XVR 

mi 
XVR 

The cycle length is m + m .  From these three numbers the behavior of 

the process may be computed for many simple models.  The results of such 

an analysis performed on the case of Example 1 is given in Table VII. 
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SECTION 7 - COWCUjSiONS 

The simple Bernoulli case, where sampling inspection is by attri- 

butes, of the Girshick and Rubin quality control model has been studied 

in detail.  A numerically feasible means of calculating optima] solutions 

has been demonstrated.  The nature of the solution is such that once 

tables of operating characteristics have been prepared, the solution 'o 

a wide variety of problems may be had through slight additional ha . 

calculations from the tables.  The solution is optimal in the sense of 

minimizing the average cost per unit time.  It also appears relatively 

insensitive to errors in the estimates of the model parameters and a 

means of calculating this sensitivity is provided.  A means of checking, 

over a long period of time, whether or not estimates are correct has 

also been suggested.  It has been shown that the optimal solution is not 

necessarily difficult to implement. 

Of course, further work remains to be done.  The entire non 100^ 

inspection case needs to be solved from beginning to end.  A means of 

estimating the model parameters should be found.  Some work should be 

done on simplifying the form of the rule to ease implementation.  And, 

assuming that the model is realistic enough so that there is some demand, 

tables of operating characteristics should be prepared. 



APPENDIX 

A DETAILED DESCRIPTION OF THE NUMERICAL 

SOLUTION METHOD 

The proposed numerical solution has two distinct phases.  In the 

first phase a finite transition probability matrix which approximates 

the natural infinite matrix is computed.  In the second phase a set of 

linear equations is solved for each of several critical values.  Each 

solution determines the operating characteristics of the rule using the 

corresponding critical value. 

The computations were carried out through the facilities of the 

Stanford Computation Center.  Not only did the Center provide free com- 

putation time but also many "software" aids.  The Gaussian elimination 

procedure used here is a minor variation of one of their library 

procedures. 

The program was written in Burrough's Extended Algol language. 

Since this differs from Algol almost solely in the provision for input 

and output, the description of the numerical solution method will consist 

of a presentation of the program with annotated comments. 

Names of Variables 

AA[0: LL, 0: LL] 

ASYP 

, a square array of coefficients in the linear 

equations. 

, a value about which posterior probabilities 

tend to cluster 
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BB[ü: LL] 

DM IN 

Dh'AX 

EPS 

FS[0: LLL] 

LL, LLL, and LMAX 

MO, Ml 

, the right hand side of the linear equation 

set. 

, the deviation between an exact "TO STATE" and 

the state in !he finite list which nearest 

approximates it. 

, the largest of the DMIN's above. 

, all states within EPS of the cluster value 

ASYP are grouped into two classes, those abov-v 

and those below ASYP.  Each class is then 

assigned a common state to represent all states 

in the class.  EPS, then, is a variable deter- 

mining the degree of approximation involved. 

,  he list of states, or "FROM STATES" used in 

the approximation, 

, LMAX is the largest allowable transition 

matrix size; LL is the matrix size used and 

LLL = LL + 1. 

, the number of periods per cycle that the 

machine spends in the good and bad states, 

respectively. 

NEG1[0: LL], NFG2[0, LL] , the state number to which a transition occurs 

in the event that a good or bad item is 

observed, respectively. 

PI , the transition probability that in a single 

period a good machine will go bad. 
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PO, PI 

PMAX 

PCRIT 

PCR 

RO 

,   the fraction of good items that a machine 

in the good or bad state will produce, 

respect ively. 

, the largest allowable posterior probability 

state. 

, the largest posterior probability state 

encountered. 

, a dummy variable running through critical 

values. 

, the fraction of repaired machines which are 

defective. 

TS1[0: LL], TS2[0: LL]   , the states to which a transition is made upon 

the observance of a good or bad item, 

respectively.  The "TO STATES." 

TSP1[0: LL], TSP2[0: LL] , the probabilities of the above transitions. 

X[0: LLJ , the vector of unknowns in the linear equation 

set. 

XO , the overall propor-1 ion of defective items 

produced. 

, a dummy variable running through posterior 

probability values. 
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E~O Ai~EA L ~~ JC ~~ J ~E ~ (YllVAL 0 f vi~EAL Yi~E31~ ~+(((!•Pt)•PI•Cl•PO))xY+ 
(1•P0)111-'l)I(\• J CY;)i[ \IJ :1; 'HAL P~QC[ ') .J k [ AI'IIVCY)iVA LUE Yi REAL. Yl 
~EGIN AI'IIV•CY• ;> T)x~ O /CC P O•Ptl•Y+?I•PIIIPQ)i E'IID AJNVi 
I~TEG E R D~ O C~ )v ~[ Sll [ Cf PS)iVAL J r EPSJ~(A._ EPS; (§) 
6EGt~ LA HE._ QJTA; ;'IITEG r R I•~; QfAL Y; Y•Oi I+OI 
F"Ofol r(• GS 1f ;• lt.·11L E ISL'IAK OJ t'Uil"' IF" Y<ASYP•EPS THEN Y•ACY) E1.SE IF" 
'!ASYP TrlE N Y•~I'IIVCY) lL Sf ~[~I'll Y+AI'IIVCASYP+E~S)Jl•I+1JENOI Ir Y~P~AX 
T~['i GO TO r;u!Aii•I+1iE'JJiOUTA:5t7f.•JF" t<L~Al! THt:N I ELSE L~AXiENOI (j) 
~~AX+7~J PMA ~ ~~.9~i 

STARTIRf.ADCPI, ~o, Pl)i ASYP•PI•PO/C~O•Plli 

LL•SIZEc0.02ll CP~• 0 ,021 IF" LL< LMAX•t n T~E~ BEGI~ LL+StZE:<O,Ol)IEPS• 
Oo01iE~OiiF" L. L <~~A X •10 T~E~ a~ G IN LL•SIZ£(0,007); EPS•0,0071ENOI 
L~L•L.L•li 
BEGI'.I 

~EAL O~AX• OMl~, ~CPlT• PCq; 
REA~ ~0• ~t~ ~0• ~0 ; 
l'.~Tt:G~~ I•J•<•~•~l·N~J 
REA._ A~RAY rs,rst,TS2,TSP!,TSP~[OILLL]I 
l'.JTE~rR AR~AY ~F"G1,~F" G 2[01LLL)J 
REAL A~RAY AA[JI~~•OIL L l' ABo~[OILL]J (\\ 
PROCEJURE ~AUS5AC~•Nl•~?~A~B~X•~J'.IG)iVALUE ~~~1o'i21 INf(G(R ~tNl•N2J ~ 
REAL ~~~~y AlOoOJ,ioX[U}J LA8EL SINGJ BEGIN I'.JTEGER J,J,JMAX,K,~J 

REAl. "';•, T dUO T i 
PROCE~U~': ELl~C~Pl•N•~U~l•A•~>IVALUE ~PloN•QJOfl INTEGER N1KPtl 
REAL ~UOTi REAL A~~AY A,S[O}J R£r,IN INTEGER lJ roR t•K~1 STEP lUNTlL N 
00 ACil•A[I]-~JOTIIB[IJi E~O [LI~J 
M•M•lJ Nl•'llt•11 ~2•'112•\1 F"J~ <•~I STEP 1U'.ITI~ N2 DO B~GI'.J 

~X•OJ l~AX•<i F"Oq I•K STEP 1U'IIT1L N2 00 
IF ~X<AaScA[I,K}) THEN BEGIN ~X•AB5CA[I,<l)J I~AX•II ENOl 
IF" ~X • 0 T~E~ ~0 TJ StNGI 
I+<l IF < - t~AX THE'.! R E~IN 

J • I~AXi T•BCJll Bril+B[J]J BCJl•TI F"OR L•O STEP 1 UNTI~ M 00 
~EGIN T•A[IoL]I A[loL]+A[J,LlJ A[JoLl•TJ ENOJ ENJJ 

F"OR J•<+l ~T~P !UNTI L M 00 BEGIN QUOT•A[J•Kl/A[I,K)J IF QUOT-0 THEN 
BEGIN B[JJ•BCJl·~[<l•QvOTI ELI~C<•l~~~QUOT,A[J,•],AtK,•])JENOJ 
E'lOJ ENJJ 

F"OR I•N2 STEP •1 J~TIL 0 00 BEGIN 
T•OJ FO~ L•l+l STEP 1J~TIL N2 DO T•T+A:t,Ll•XCLlJ 
X[ll•CBtiJ•l)/A[loilJ E'lJJ EN' Or GAUSSAJ 

COM~E'.IT T~IS GROuP OF" INSTRUCTIONS CO~PJTES THE TRANSITIO~ PROS• 
ABILifY ~ATHJX C~RR(SPONOING TJ THE P~OCESS ~HICH TRACKS TH£ POST• 
ERIOR PROBAdlLlTIES ON THE MACHINE STATE, J 
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PROGRAM EXPLANATION 

1. Several functions are defined.  Y  always represents the probability 
that the machine will be in the bad state for the production of the 
next item.  D(Y), then, is the probability that a good item is pro- 
duced.  A(Y)  is the next posterior probability given that, a good 
item is observed.  B(Y)  is this probability upon observing a bad 
item.  AINV(Y)  is the inverse function to  A(Y). 

2. The function SIZE(EPS)  gives ihe  approximating matrix size as a 
function of the approximation constant  EPC.  It does this by 
quickly going through the approximating procedure and counting the 
size of the resulting matrix. 

3. The matrix size for several values of EPS is computed. The pro- 
gram selects £ value for EPS wbich results in a matrix size near 
to but less than  LMAX. 

U-.     The input variables to the  GAUSSA  procedure are:  A, an  M x M 
matrix of cc fficients; B, an M vector of constants;  X, an M 
vector of uuKnowns and  SING, a label to which control passes should 
a singular matrix be found.   If this procedure is executed for a 
value of Nl = 1  and N." = K  then the values appearing in X[l] 
for  I = 1, 2, ... , K are the solutions to 

K 
Z    A[I, J]X[J] = B[I] ;  1 = 1, ... , K 

J=l 

If next the procedure is called for a value  Nl = K + 1  and 
N2 = L  then X[ ]  contains the solution to 

L 
X A[I, J]X[J] = B[I] ;  I = 1, ... , L 

J=l 

And so on, extracting the solution to increasing subsets of equations 
while solving the largest set. 
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COMMENT FIRST    THE     Au.nwAHLF:       STATES       1^    THE    APPRTXIMATION    ARE    COM- 
PUTE )   AMO   ST:WED   I\   rsc   j     ; 

Y»-0;i«-0;    fo'i    <»-DLiTE^    1    4HllE    I<LL    TJ.')    RLGIN    F S E I ] ♦• Y» 
If    Y<ASrJ-t;j5    THCM   BEGIN    T S U M ♦■ A { Y ) J NFG 1 C 1} ♦• I + 1 J    T SP 1 C M «-D ( Y ); 

T5p<;[IJ♦-l-L,(Y);   Y*A(Y);   E\.o 
ELSE    IE    r?a;5YJ    TH:\   JE^IN    T S IC 11 •■ f 3 C I - 1 1)    NTolCIj«-!-!;    T SP 1C 1] ♦•D C Y ); 

TS^^CIUI-JCY)!    Y ♦- A I NJ v ( Y );    EO 
E_SE      iE.". I\    T3l[l-n«-P"sCn«-Y«-ASYP-0.3a»<EPSJ    TSHI]»YJ    NEGHMM; 

T b" H M • , ( T );    r ^ -> ? [ n ^ i - ^ ( Y ); 
1 »■ I ♦ i J   T«-ASYJO.i3x£Pbi   rsrn-iMcn^-Yj   v F 5 it I ] ♦■ u   TS3ici;»-o(Y); 
TS^Jcn^i-DCY);   Y»-AiNjvrA5YP + EPS);   END? 

1 ■»• 1 +1;       E -o; 
C^K-^ENT \ExT    T^£    MATRIX    IS   fILi_F:)    PI      wIFH    A    "Tn"    STATE   BEING 

a r' P " -^ ] -t f, T -: ;   •"» >    ITS    NEAREST    N E I a H a i M      ; 
Dv. Ax»-0.^; PC-<IT«-tSCL.Li; Fb[_LL]«-?.999Vv; 
FJh'    I ♦■ 0 S T E ^    U N T I _    „^     n    " f G f N    D *! I N«- 0 . V 9 #     ^«--iCFSCI]); 
If    Y>PC-<IT*:j>iAX    T-IE.N    "LGI'i    TS^tM4-^;       \F3?C I }*'999|    END 
E_SE    -JE:. IN    5" D ^    J«-l    STEp    1    UNTIL    L u    DO    IF    AysCY-F5Cj])<0MlN    THEN 
3 EC, IS   OylN«-ABS(Y-FSCj:j}K*-j;    F\O; 

TS?[I]«-FS[<];     MFOPCM«-^;     I"  DMIS>OVAX  THEN  o«IAx♦■ oMIN;   END;  END; 
COMMENT   THE T^ANSITIUN P^O^A-H^ITY MATRIX IS WRITTEN OJT  ; 
3 E C. I N FORMAT F M T 1 ( X ^4 . " P I = " . F b . 3 # X 2 . 

"P 0 = ", "5.3» X k. "PI = ". F S.3. 
X a . "LPS„ = "# F5.3/Xa . "MAX,APPROX,= ". F6,Ü. X3» 
"MATRIX SIZE Oi",     13/ 
y.U    i "ASY3 = " / (■ 5. 3 .   Vi., "PCHIT s "» F5.3 // ), 

FMT2( X2n, "THE TRAMSITION P^II^ASILITY MATRIX IS" / 
X2» "STATE     STATE      STATE     STATE  ^ITH      M» 
"STATE     STATE  ^ITH"  / 
X2, " NO.      CFBOM)     NO.(TO)   (TO)    PROB      NO.(TO)   (TO)"» 
"    P R 0 J " /   ) . 

F M T 3( X2» 15» xa, F5.3» X5» 15. X a, F5.3» X2» F5,3» *U, 
15» KU ,    F5.3. X2» f-s.g ) , 

Faa( 16. X?. ü(r5.3, X2). Fb,t,    X2» M,2CX2»r6,Ü) ); 
LIST OUTK PI» PQ» Pi» EPS» OMAX, LL» ASY». PCRlT). 

OJT3 ( I. FSCI)» NFr.HM, TSICM, TSPUI], NFrJ2Cn» TS2[I]» 
T5P2C I ] )  ; 

WRITE(FMT1.3UT 1 ); rtRITE(FMT2); FOR I •■ 0 S T E P UMTIL LL 00 rtRlTE(rv(T3. 
3Jr3)J rtRITECt^AlET); E N 0; 

BEGIN FORMAT TMTKXIO. "TRANSITION PROBABILITY IS "»FS^ / 
XlO,"FRACTION Or 3000 ITEMS PRODUCED BY A REPAIRED MACHINE IS",To,3/ 
X10,"FRACTION OF GOOD ITEMS PRODUCED BY A DEFECTIVE MACHINE IS^.FS.S// 
X5» "C-«IT IC At  EXPECTED  PERIODS F3R      FRACTION     FRACTION OF MACH'» 

REPAIRS"/ 
X5." VALUE      CYCLE     rtHlCH MACH.IS   OF DEFECT.   REPRD HHCH ARE "» 

» PER  "/ 
XS»" LENGTH   -GOOD- -DEFECT-   ITEMS      -GOOD- -OE^ECT-,,» 

"  PERIOD"     //); 
LIST ouTK :J

I»PO»PI ); WRITE(TMTI»OUTI );ENO; 

© 

COMMENT  THIS GROUP OF INSTRUCTIONS SETS 0»    THE EQUATIONS WHICH HILL 
BE USED TO SOLVE FOR THE LONG RON BEHAVIOR  ; 

FOR J«-OSTEP lUNTlL LL DO BEGIN AAtJ,J]«-i; FO« I»-J*1STEP lUNTlL UL 00 
AA[ I» J]»-AA[ J, I ]#-0;ENO; FOR J«-0STEP lUNTlL LL DO BEGIN BBtJUO; 
I«-NFG1CJ]; IF ISLL THEN A A [ I » J ] •• A A t I » J ] - T S P 1 [ J ] ; 

o 
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5. The relations among the transition matrix variables generated by 
the algorithm is summarized as: 

(1) If  Y = FS[I] < ASYP - EPS  then 

a. FS[I] = A(FS[I-1]), I / 0; FS[0] - 0; 

b. NP,G1[I] =1 + 1; 

c. TS1[I] = A(FS[I]); 

d. TS?1[I] - D(Y); 

e. TS2[I]  is the state in the list nearest to  B(Y); 

f. TSP2[I] = 1 - D(Y); 

(2) If       Y   =   FS[I]   > ASYP  +  EPS     then 

a. FS[I]   - A(FS[I   +   1]); 

b. NFG1[I]    -   I   -   1; 

c. TS1[I]   -  A(FS[I]); 

d. TSP1[I]   =  D(Y); 

e. TS2[I]      is   the   state   in  the   l^'.st   nearest   to     B(Y); 

f. TSP2[I]   =   1  -   D(Y); 

(3) If   ASYP - EPS < Y = FS[I] < ASYP + EPS  then 

a. FSLl] = FS[I - l] < FS[I + i]  according as  Y < ASYP 
or • Y > ASYP; 

b. NFG1[I] = I; 

c. TS1[I]   =  FS[I]   =  Y; 

d. TSP1[I]   =  D(Y); 

e. TS2[I]  is the state in the list nearest to  B(Y); 

f. TS?2[I] = 1 - D(Y); 

6. Equation 3«2 

(I - H)V = 

is set up as AA'X = BB. 

7-  Using the modified Gaussian elimination procedure, the subsets of 
Equation 3-2 are solved.  At each step, the operating characteristics 
are computed according to the finite counterparts of Equations 
2.12 to 2.16. 

1+0 
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JTI);ENO; END; 
G:] TU STAR I ; END; 

HAT FL"B INGULAR MATRIX"); WRITE(F ) IEND» GO TO START; 
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